PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) Internationa! Publication Number: WO 97/14097
9 Al

GOGF 5/45 (43) International Publication Date: 17 April 1997 (17.04.97)

(21) International Application Number: PCT/F196/00530 | (81) D&slgnated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

(22) International Filing Date: 9 October 1996 (09.10.96)

(30) Priority Data:

954838 11 October 1995 (11.10.95) FI1

(71) Applicant (for all designated States except US): NOKIA
TELECOMMUNICATIONS QY [FI/FI); Upseerinkatu 1,
FIN-02600 Espoo (F1).

(72) Inventors; and :

(75) Inventors/Applicants (for US only): AHMAVUO, Pekka
[FUFI); Suvantokatu 1 D 4, FIN-33100 Tampere (FI).
ALA-RANTALA, Martti [FUFI]; Satamakamu 18 F 74,
FIN-33200 Tampere (FI). NARVANEN, Pia [FUFI];
Mesinmarjakuja 4, FIN-33960 Pirkkala (FI).

(74) Agent: OY KOLSTER AB; Iso Roobertinkatu 23, P.O. Box
148, FIN-00121 Helsinki (FI).

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, Fl, GB, GE,
HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MD, MG, MK, MN, MW_MX, NO, NZ, PL,
PT. RO. RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA,
UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ,
UG), Eurasian patent (AM, AZ, BY, KG. KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, DE, DK, ES, FIl, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,
BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and 10 be republished in the event of the receipt of
amendmenls.

(54) Title: METHOD FOR PRODUCING COMPUTER-CONTROLLED SERVICES

(57) Abstract

The invention relates to a method for producing application-specific computer-controlled services. An application-specific program
code is generated automatically and an application-specific computer program for providing said service is formed. In order to perform
changes more easily than before, the computer program is divided into three groups. The first group (A) is formed only of such a code
that remains the same regardless of the application, and the second and the third group are provided with a code produced by means of
said generation in such a way that (a) the second group (B) only includes a code produced by means of said generation and (b) the third
group (C) contains a code produced with said generation that is to be changed by the designer after the generation. The generating means
(11) are informed of whether the code to be generated is produced for the second or for the third group.

Y 1589

IOA

Adw =lele]

WO 97/14097 PCT/F196/00530

10

15

20

25

30

1

Method for producing computer-controlled services

The invention relates generally to systems similar to network
management systems that are provided by means of software with services by
means of which the end user uses the system, for example controls the
apparatuses in the network. More precisely, the invention relates to a method
according to the preamble of the appended claim 1 for producing application-
specific computer-controlled services for a user of such a system. The invention
also relates to a system according to the appended claim 8 for producing
application-specific computer-controlled services.

There are several systems intended for code generation in the market.
Such generators are typically intended for use at the beginning of programming
and they cannot be used for making significant changes in finished applications
rapidly and without any mistakes. In other words, known generators do not
provide sufficient support for repeated changes and additions.

Several applications are also such that it should be possible to make
changes therein as rapidly and correctly as possible. An example of such an
application is a network management system wherein the network to be
managed comprises several apparatuses of different types and the network
changes continuously as the operator acquires devices from sevéral different
manufacturers and performs updatings on existing devices and their software.
Especially with the new free competition in the field of telecommunications a
need has occurred to continuously provide the users with new services, which
further increases the importance of flexible possibilities of change.

The known systems are not very well suitable for applications of the -
type described above. This is for example due to the fact that the systems
provide the designer with a great deal of detailed and therefore also secondary
information from which it is difficult to find the essential parts (to which the
changes are directed). The designer must also be able to control (understand)
this information. Therefore _the person who makes the changes must be an

expert in the field of programming.

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

2

In such a system, there is also the danger that the designer changes
such a part of the software that is not to be changed.

The purpose of the present invention is to eliminate the
aforementioned drawback by providing a new type of arrangement for
producing an application-specific service. This object is achieved with the
method according to the invention that is characterized by what is described in
the characterizing portion of the appended claim 1.

The idea of the invention is to create an environment where changes
are as simple and clear as possible for the designer. This is possible by placing
separately the code to be generated (a) in such a part (containing the default
functionality) that the designer can ignore during the changes (so that it can be
invisible) and (b) in a part that is visiblé to the designer and that requires
changes to be made by the designer in each situation of change. The
separation is based on the use of special template files and the changes are
carried out by making a change corresponding to the change in the description
file of the application, by regenerating the application framework and by
thereafter making, if required, the changes that are to be carried out manually
by the designer. In connection with the generation, the code generator modifies
the template files on the basis of the description file of the application.

Due to the arrangement according to the invention, changes can be
carried out rapidly and as faultlessly as possible. The product to be delivered to
the user of the service can thus be made faultless rapidly. Due to the invention,
it is even possible that changes are made by a person employed by the
organization, such as the network operator, using the service, in which case the
changes will be as flexible as possible.

The above-described advantages are based on the fact that the
system increases the abstraction level of the designer's work; the designer only
sees the essential part (the parts requiring changes) of the application and the
secondary matters (the complicated program code) are invisible. Therefore it is

easier for the designer to locate the parts to which changes must be made. At

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

3

the same time, this also decreases the possibility for the designer to
accidentally change parts that are not to be edited.

In the following, the invention and the preferred embodiments thereof
will be described in greater detail with reference to the exampies according to
the accompanying drawings, in which

Figure 1 illustrates a system according to the invention,

Figure 2 shows the generation of a finished application with the
system according to the invention,

- Figure 3a shows the main window in an illustrative application,

Figure 3b shows a subwindow of the illustrative application,

Figure 4 shows an object model of the illustrative application,

Figure 5 shows an application description supplied to the code
generator,

Figure 6 shows a generated application framework,

Figure 7 shows the main window of the application in its changed
form, _

Figure 8 shows the change to be made to the object model, and

Figure 9 illustrates another change to be made to the application.

Figure 1 illustrates the network management system according to the
invention. An object-based program, based on the MVC++ application
architecture (and the use of the C++ programming language), is used as an
example. it can generally be stated that the method requires the use of a simple
application architecture, for example the MVC++ architecture. Since this
architecture will be used as an example below, such features that facilitate the
understanding of the following description will be described shortly in this
connection.

The MVC++ architecture is modified from the known MVC (Model-
View-Control) architecture and according to it the application is divided into
three parts: model, view and control. The model part is a collection of objects
describing the area of the real world to which the application relates. The view

part is the outmost layer of the application, visible to the end user. This part

WO 97/14097 PCT/FI196/00530

10

15

20

25

30

4

determines what the user sees on the monitor. The view part is divided into a
visual and functional part. The visual part manages the layout of the disblay and
the functional part controls the functionality related to the display. The view part
is created by the controller part, and for each view object there is one controller
object. The controller part controls the cooperation of the model and view parts
and forms the application-specific logic. One controller object may have a
relation to several model objects and the same model object may be connected
to several controller objects. In the application according to the MVC++
architecture, the objects of the model part and the view part are not directly
connected to each other, but a view object can communicate with a model
object only via a controller object. Therefore the view part interprets a command
given by a user from the workstation and indicates to the controller part which
function is in question. The controller part contains the knowledge about how
each command is to be processed, so that the controller part requests the
mode! part to carry out the measures corresponding to the command. The
model part informs the controller part of the results of the measures, and the
controller part in turn asks the view part to show them to the user. Each
application according to the MVC++ architecture has a main controller class, i.e.
a main controller, that controls the other controller classes and thus the entire
application. Also, a main controller object creates a main view object and
controls it. The main view object forms the main window of the application. For
every other window (dialog) there are separate view and controller classes.

A more detailed description of the MVC++ architecture is provided for
example in Implementing Interactive Applications in C++ by A. Jaaksi (Software
Practice & Experience, Volume 25, No. 3, March 1995, pp. 271-289).

The network management system according to the invention can be in
practice for example such as shown in Figure 1. Network operators sitting in
operation and maintenance centres MS use network management workstations
WS connected to a separate workstation network WSN that may be for
example an Ethernet network. The management system is typically divided into

several computers of the workstation network, some of the computers

WO 97/14097

10

16

20

25

30

PCT/FI96/00530

5

comprising a database DB containing the data required to coﬁtrol the network.
The management system is connected via a Q3 interface defined in the
standards for example to a transmission network DCN that may comprise for
example SDH devices 21 and PDH devices 23. The control channels between
the SDH devices are formed in practice in header bytes of an STM-N signal
(N=1,4,16), so the control signals between the SDH devices travel together with
the payload signal (i.e. also in the same physical network). Conventional PDH
devices 23 in turn require arrangements that are specific for each manufacturer,
wherefore they must be connected to the management system via a separate
mediation device 22.

The system according to the invention comprises a code generator 11
that automatically generates a part of the application-specific computer program
10 used in the system and called hereinafter an application framework. This is

the program framework that is run when the operator uses the network

‘management services from his workstation. The finished application is stored in

a server or an individual workstation of the workstation network (or in both).

A high abstraction level description of the application is formed for the
generator, the description forming the first input group of the generator. This
description is denoted with reference numeral 12. The description can be
written for example manually directly into a text form understood by the
generator and the description can thereafter be stored as a file in the system
memory. The description can also be produced with a known CASE (Computer
Aided Software Engineering) device where the application is displayed as a
graphic description. In this case, the description stored in the file by the CASE
device is converted into a form understood by the generator with a special -
conversion program.

Another input group to the generator consists of template files 13
acting as models to the generation of the application framework. The code
generator 11 generates the application framework by regenerating the code to
the template files on the basis of the description 12 written by the designer. The

template files are divided into two groups, 13a and 13b, and a certain part of the

WO 97/14097 . PCT/F196/00530

10

15

20

25

30

6

application framework is generated on the basis of each group. The template
files are fixed files that do not have to be changed when the application is
modified. In this respect, the template files could also be considered to be a part
of the internal implementation of the code generator 11.

From the above-described two input groups the code generator forms
its own part (denoted in Figure 1 with the term "generated code") of the
application-specific computer program 10 (i.e. the application framewaork) shown
on the right side of Figure 1. According to the invention, the application
framework is divided into three different groups or layers A to C in such a way
that the properties of group A are inherited to group B and the properties of
group B are inherited to group C. In Figure 1, the inheritance is indicated with a
triangle pointing upwards. '

The first group A (the lowermost layer; even though the layer is shown
in the figure as the uppermost one, it is the lowest layer for the designer) only
contains such a program code that remains the same regardless of the
application. Therefore this group does not have to be created specifically, but it
remains the same from one application to another. The group contains the
functionality that remains the same from one application to another. Even
though some changes would have to be made to the application or the
application would be changed altogether, this group always remains the same.
In this example, the first group consists of MVC++ base classes (that are the
same for all applications).

The second group B (the middle layer) and the third group C (the
uppermost layer) are provided with a program code produced with the code
generator 11. The division is performed in such a way that the second group is
only provided with a program code produced by means of the generator and the
third group in turn is provided with a code produced both by the generator and
manually by the designer. During the generation, the third group is therefore
provided with a code to which the designer is intended to make changes, e.g.
additions. After the generation, the designer makes the necessary changes to

the third group. The third group is therefore divided in its final form into two

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

7

parts: part C1 that only contains a code produced by the generator and part C2
that contains a code produced manually by the designer.

’ The second group B comprises the classes that contain the
application-specific default functionality. These classes are generated by means
of the generator in a manner described below, and the designer does not have
to make any changes in this group at any stage. This default functionality is
dependent on the application structure and the services connected thereto, and
it can be changed in such a way that the properties the designer has added to
the application (i.e. to group C) are retained. The second group is generated on
the basis of the corresponding template files (13a) and the description 12. The
classes of the second group are stored in the system into their own files which
do not contain a code written manually by the designer. These classes will be
called below default classes.

The third group (C) consists of skeleton classes that are classes to
which the designer manually writes an additional functionality required by the
application. Due to the technical properties of programming languages,
changes must also be made to the skeleton classes during the regeneration of
the application framework. For that purpose, the code (part C1) to be
regenerated is separated from the rest of the code (part C2) in the files
containing the skeleton classes. The separation employs character strings

which are reserved especially for this purpose and on the basis of which the

'generator recognizes the‘parts of the files that are to be regenerated during the

changes.

Information about whether the code to be generated is a part of the
default classes (i.e. group B) or the skeleton classes (i.e. group C) is given to
the generator by means of the template files. For this purpose, the template file
section 13 comprises specifically a part corresponding to group B, i.e. the
template files 13a of the classes containing the default functionality, and a part
corresponding to group C, i.e. the template files 13b of the skeleton classes.
The template files of the default classes are a model to the functionality that can

be implemented automatically on the basis of the description file 12. By means

WO 97/14097 PCT/FI196/00530

10

16

20

25

30

8

of the template files 13b of the skeleton classes one generates the frames that
are supplemented by the designer with the code that cannot be automatically
generated. The accompanying appendix 1 uses the template files of the default
and skeleton main controller classes as examples.

When the application framework is created for the first time, the code
generator writes the required code into groups B and C. When changes are to
be made to the final application, the generator rewrites groups B and C. The
generator can rewrite group B in full on the basis of the changed input data, but
the contents of group C (Skeleton classes) must be read first so that the
generator recognizes the part added manually by the designer so that it can be
left as it is.

When the code to be generated is such that it contains a code of the
generator, the code to be generated is supplemented with an identifier by
means of which the code to be generated and the manually written code are
connected. This will be described in greater detail below.

The generator reads template files. When the generator finds a certain
character string reserved for this purpose from the template files, it replaces the
string with the code part it has generated. The generator forms these code parts
according to its own generation rules and the application description. The
generation rules depend on the application architecture used, but they are
independent of an individual application. (The generation rules therefdre form a
kind of a function providing a result that is dependent on the parameter used,
i.e. on the description 12 of the application.)

As it is apparent from what is stated above, the application framework
to be generated has the following characteristics:

1. The manually written code and the automatically generated code
are separated from one another by dividing the application into default classes
and skeleton classes.

2. The manually written code and the code to be generated are
separated within the skeleton classes by means of character strings reserved

for this purpose.

WO 97/14097) PCT/FI96/00530

10

15

20

25

30

9

3. The manually written code and the code to be generated are
combined with special identifiers when the code to be generated contains a
directly manually written code.

Figure 2 illustrates an example of the generation of a finished
application with the method according to the invention. The designer first makes
an object diagram e.g. with a CASE device. The description is converted into a
form understood by the code generator 11 either by writing it manually or
alternatively by means of a conversion program. The code generator then
generates the applicaticn framework 10 consisting in this example of files in the
C++ language (controller classes and functional view classes) and of files
(visual view classes) in the format of the user interface tool (e.g. X-Designer™,
the trademark of Imperial Software Limited). The designer supplements the
functionality of the application by means of manual coding and (e.g. the
aforementioned) user interface tool of the user interface. The program can then
be compiled and linked as a program to be run for example in a network
management system where the network and its network elements (physical
devices) are controlled from a workstation WS via a transmission network. The
above-described development tools can also be located in one workstation of
the network management system so that the operator personnel can make
themsélvés the changes required in the network management system.

In the following, the implementation of the application will be illustrated
by using as an example an imaginary application The radio network parameters
of the base station related to the network management, the application making
it possible to view and set parameters related to the radio network of the base
station.

Figure 3a shows the main window of the application as it is seen on
the display of the workstation WS of the control centre in the network
management system MS of Figure 1. The application is started from the main
user interface of the network management system, and the main window of the
application then appears on the display. The data related to the transmission

power of the base station can be read and set from this main window. The

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

10

application also comprises one subwindow that is shown in Figure 3b. The base
station to be treated can be selected from this subwindow.

The designer first draws with the CASE device an object model
describing the application. The obtained model is shown in Figure 4, employing
the commonly used OMT notation described for example in Object Oriented
Modelling and Design by James Rumbaugh et al. (Prentice-Hall, New Jersey,
USA, 1991, chapter 3). (It should be mentioned that the frame 4a shown on the
left side of Figure 4 and not connected to any class provides additional
information about the entire application described in greater detail below. By
means of the view type definitions 4B and 4C, the user interface components
inherited to the view classes are selected.)

This graphic description is converted by a conversion program or by
manually writing into a form understood by the code generator. The code thus
obtained is shown in Figure 5. In order to understand this description file, the
accompanying appendix 2 shows the syntax of the description language used.
(Figure 5 shows by means of parenthetical expressions a similar hierarchial
structure as shown in Figure 4 with the OMT notation).

The application framework 10 is then generated by using the
application generator 11. The listing shown in Figure 5 is then generated into
the application framework shown in Figure 6. Figure 6 shows the above-
described group division in such a way that of the generated code, the classes
belonging to group B (i.e. the default classes) are depicted with thin frames and
the classes of group C (i.e. the skeleton classes) are shown with thick frames.
The programmer thus sees from the application framework as the C++ source
code the (view, controller and abstract partner) classes shown with thick
frames. The designer implements the functionality of the application by adding a
necessary amount of code to theses skeleton classes. (Abstract partner is a
class describing what an object expects from a calling object. Since the concept
of abstract partner is not related to the actual inventive idea, it will not be
described in greater detail in this connection. A more thorough description of

the abstract partner is provided in the aforementioned article on the MVC++))

WO 97/14097 PCT/F196/00530

10

11

The designer implements the layout of the user interface by editing
the visual view classes (the classes shown in the figure with broken thick
frames) with a user interface tool (e.g. X-Designer™). The other classes shown
in Figure 6 are not visible to the designer. (The user interface components
shown in the figure and inherited to the visual view classes are selected on the
basis of the view type definition set forth in the description file 12.)

When Figures 4 and 6' are compared, it becomes apparent how the
arrangement according to the invention makes it possible to increase the
abstraction level of the programming work. A description on the abstraction
level of Figure 4 can be converted into the (rather complicated) class hierarchy
of Figure 6. Of the classes of Figure 6, the designer only sees the classes
depicted with thick frames, so the designer also sees the generated code on a
high abstraction level.

The naming of the classes to be generated employs the naming rule
shown in the following table. In the tabie the character string "abc" is a three-

letter prefix of the application given in the description file (Figure 5).

AbcDefaultProgram_c application default main program class

abcProgram_c application skeleton main program class

abcDefaultMainController_c application default main controller class

abcMainController_c application skeleton main controller class

abcDefaultMainView ¢ application default main view class

abcMainView c - . application skeleton main view class

abcDefaultMainViewAbsVP_c application defauit main view abstract partner
class

abcMainViewAbsVP_c application skeleton main view abstract partner
class

abcDefault<Sub>Conroller_c default subcontroller class where <Sub> is the

WO 97/14097

10

PCT/F196/00530

12

subcontroller name given in the description file

abc<Sub>Controller_c

skeleton subcontroller class where <Sub> is the
controller name given in the description file

abcDefault<Sub>ControllerAbsCP _

C

default subcontroller abstract partner class
where <Sub> is the subcontroller name given in
the description file

abc<Sub>ControllerAbsCP_c

skeleton- subcontroller abstract partner class
where <Sub> is the controller name given in the
description file

abcDefault<Sub>View_c

default subview class where <Sub> is the

subcontroller name given in the description file

abc<Sub>View_c

skeleton subview class where <Sub> 1s the

controller name given in the description file

abcDefault<Sub>ViewAbsVP_c

default subview abstract partner class where
<Sub> is the subcontroller name given in the

description file

abc<Sub>ViewAbsVP_c

skeleton subcontroller abstract partner class
where <Sub> is the controller name given in the

description file

The following items A to E show as an example the generation of the

declaration of the default main controller class (the class "abcDefaultMain-

Controller_c" of group B) on the basis of the template file and the data in the

description file. The frames show the parts of the files that are changed. The

frame has on one line an arrow, and the part preceding the arrow describes the

situation before the change and the part following the arrow in turn describes

the situation after the change.

A. The name of the class is obtained by replacing the character string

"fft" in the class name (cf. appendix 1) of the template file with an application

prefix provided in the description file, in this case "abc™

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

35

13

class ffiDefaultMainController_c
=> class abcDefaultMainController

'B. The name of the main view abstract partner class to be inherited to
the default class is obtained by replacing from the character string
"fitMainViewAbsVP_c" the part "fft" with "abc". The names of the subcontroller
abstract partner classes to be inherited to the main controller are formed
according to the naming rule. They are formed into a character string where the
names of the abstract partner classes are separated with a comma and a line
feed character. The character string thus obtained replaces the character string

INHERIT_ABS in the template file:

: public mvcMainControllerBase_c,
public kuiConfirmationDialogControllerAbsCP_c,
public ffiMainViewAbsVP_cINHERIT_ABS

=>

: public mvcMainControllerBase_c,
public kuiConfirmationDialogControllerAbsCP_c, .
public abcMainViewAbsVP _c,
public abcSelectionControllerAbsCP_c

C. in the declaration of the methods of the pubilic part in the template

file, the character string "fft" is replaced with "abc™:

!
t

public:
fftDefaultMainController_c(fftDefaultProgram_c *fftPrg);
virtual ~fftDefaultMainController_c();
virtual errAtom_c *MVCCreate();

// defived from abs. view partner
virtual void FiWwMCloseWanted();

/! confirmation controller abstract partner
/f methods
virtual void KuiActionConfirmed(),
virtual void KuiActionNotConfirmed();
=>
{
public: .
abcDefaultMainController_c(abcDefaultProgram_c *abcPrg);

WO 97/14097 PCT/F196/00530

10

15

20

25

30

35

14

virtual ~abcDefaultMainController_c();
virtual errAtom_c *MVCCreate();

// defived from abs. view partner
virtual void AbcWMCloseWanted();

// confirmation controller abstract partner
// methods

virtual void KuiActionConfirmed();
virtual void KuiActionNotConfirmed();

D. In the declaration of the protected part of the template file, the
character string "fft" is replaced with "abc" and MAINVIEW_C is replaced with a
main view name formed according to the naming rule. The character string
SUB_CONT_DECLARATIONS is replaced with a character string formed in the
foliowing manner:

The following steps are repeated for each subcontroller defined in the
description file:

1. A character string according to the naming rule is formed as the
name of the subcontroller class on the basis of the name given with the
sub_controller definition of the template file.

2. The character string is supplemented in order with a space
character and an asterisk.

3. If an instance name has been defined for the subcontroller by
rﬁeans of the instance definition, it is added to the character string, otherwise a
name given with the sub_controller definition is added to the character string.

4. The character string is supplemented with a semicolon and a line
feed character.

The character strings thus obtained are combined.

protected:
mvcMainViewBase_c *MVCGetMainView();
MAINVIEW_C *view,
fftDefaultProgram_c *fftProgram,;

// confirmation dialog

WO 97/14097 PCT/F196/00530

15

kuiConfirmationDialogControllerC_c *confirmationDialog;

|SUB_CONT_DECLARATIONS

5 |=>

protected:
mvcMainViewBase ¢ *MVCGetMainView(),

10 abcMainView_c *view;
abcDefaultProgram_c *abcProgram;

// confirmation dialog
kuiConfirmationDialogControlierC_c *confirmationDialog;

.15
abcSelectionController_c *selection;

E. The private part is formed by replacing the character string "fft" with

20 "abc" given in the description file 12:

private:

fftDefaultMainController_c(const fftDefaultMainController_c &);

ffiDefaultMainController_c operator=
25 (const fftDefaultMainController_c &) const;

=>

30 |private:

abcDefaulitMainController_c(const abcDefaultMainController_c &);
abcDefaultMainController_c operator=
(const abcDefaultMainController_c &) const;

35 |1

The files generated from the illustrative application are shown in the

table below:

WO 97/14097

PCT/FI96/00530

16

Skeleton classes to which the programmer encodes the additional functionality required by

the application:

|

file Iclass
abcviewmainmx.h abcMainView_c, abcMaanewAbsVP c :
abcviewmainmx.cc abcMainView_c | |

abcevivalintmx.h

abcSelectionView_c, abcSelectionViewAbsVP_c

abcvivalintmx.cc

abcSelectionView_c | !

abccovalintmx.h

abcSelectionController_c, abcSelectionControllerAbsCP_c

abccovalintmx.cc

abcSelectionController_c '

abccontmainmx.h

|abcMainController_c

abccontmainmx.cc

labcMainController_c

abcmainprogmx.h

labcMainProgram_c

abcmainprogmx.cc

abcMainProgram_c

File where the version number of the application is set: !

abcyourbvermx.h

1

|

Description in the format of the user interface tool about the visual view classes

The visual skeleton classes are generated on the basis of the view type determination, e.g

(type "basic_application_base")

! ! |

file

class

abcvsmainvimx.xd

abcMainViewVisual_c

abcvsvalintmx.xd

jabcSelectionViewVisual_c

i

Classes containing the application-specific default functionality: r

file

class ‘ i

abcviewmadfmx.h

abcDefaultMainView_c, abcDefaultMarnvlewAbsVP c

abcviewmadfmx.cc

iabcDefaultMainView_c ‘

abcvdvalintmx.h

iabcDefaultSelectionView_c, abcDefaultSeIectlonVewAbsVP C

abcvdvalintmx.cc

1abcDefaultSelectionView_c | i |

abccdvalintmx.h

jabcDefaultSelectionController_c, abcDefaultSelectionControllerAbsCH

abccdvalintmx.cc

labcDefaultSelectionController_¢ ! , I

abccontmadfmx.h

abccontmadfmx.cc

:abcDefaultMainController_c : !
1abcDetaultMainController_c ;

abcmainprdfmx.h

iabcDefaultMainProgram_c : I

Visual view classes in the C++ [anguage. The code generator starts the l

XDesigner user interface ool that generates the visual view classes from the

descriptions in the XDesigner format.

ne

class

abcvsmainvimx.cc

abcMainViewVisual_c

abcvsmainvimx.h

abcMainViewVisual _c

abcvsselectmx.cc

abcSelectionViewVisual_ ¢

abcvsselectmx.h

abcSelectionViewVisual_c

File containing data about the generated application framework:

README. 1st

Makefile for compiling the application:

abcyourbankmx.mak

[

As the table and Figure 4 show, one controller class of the application
5 description is converted into two classes: a skeleton class (belonging to group

C) and a default class (belonging to group B). The view classes in turn are

WO 97/14097 PCT/F196/00530

10

15

20

25

30

35

17
converted into three classes: for the functional part of the view, default and
skeleton classes, and for the visual part of the view, only a skeleton class (since
this part can be processed with the user interface tool on a level higher than the
source code).

In the following, examples of main controller default and skeleton
classes are shown. The header and implementation files of the default class are
shown first and the header and implementation files of the skeleton class are
shown next. A header file shows the interface of the object visible to the
outside, i.e. the functions that another object can call. An implementation file in
turn contains the actual code that is performed when a function is called.

The header file (in the C++ language) "abccontmadfmx.h" of the
default main controller class is as follows (when the template file shown in the

appendix has been amended in the above-described manner):

T T T T
*x

* %

** $RCSfile$

* ok

*
T T T T T e
* *

* ¥ $Author$

* %

* * Copyright (¢) Nokia Telecommunications 1991 - 1993
*
o 3k 3 3k ok ok ok d ok 3ok Ak 3 ok 3k o oK ok ok ok K oK o K 3 A o ok ok o o o ok ok ok ok oK o ok 3 ok ke ok ok ok K ok o oK ok 3k o koK o 2 3 o ok ok ok 3k ok ok 3 ok

Application Framework generated file

This is a header file for default main controller class.
You should not edit this file!!

RUNGOXMX version: @(#) Version 1.9 (t8mcl)

K K X X O® ¥
* X * X K X

o3 o ok oK oK ok ok 3K ok oK K 3 K 3 3K 3 R oK 3 ok oK K A 8 00K o ok oK K o o K ok o o o K o R KK o o o oK ok oK o ok ok o ok ok ok ok ok K ok K
* %

** 3$Logl

*

A AR KKk OO KRR KK KRR R KRR R KKK KRR KOk ko ko

WO 97/14097 : ' PCT/FI96/00530

18

#ifndef ABCDEFAULTMAINTCONTROLLER_H
#define ABCDEFAULTMAINTCONTROLLER_H

/* MODULE IDENTIFICATION

5 [#rrrknkhhk kR kR R R R R Rk

static char abccontmadfmx_rcsid[] = "Id" ;

#include <stdio.h>
10 |#include <stdlib.h>

#include <weratomx.h> // Errors
#include <kuicocfmdlgmx.h> // controller confirmation dialog
#include “abcviewmainmx.h" // Main View and abstract view partner

.15 |// header files of sub controllers
#include "abccoselectmx.h”

class abcDefaultProgram_c;

20

class abcDefaultMainController ¢
: public mvcMainControllerBase_c,
25 | public kuiConfirmationDialogControllerAbsCP _c,
public abcMainViewAbsVP_c,
public abcSelectionControllerAbsCP_c
{
public:
30 abcDefaultMainController_c(abcDefaultProgram_c *abcPrg);
virtual ~abcDefaultMainController_c();
virtual errAtom_c *MVCCreate();

// defived from abs. view partner
. 35 virtual void AbcWMCloseWanted();

// confirmation controller abstract partner
// methods

virtual void KuiActionConfirmed();

40 virtual void KuiActionNotConfirmed();

protected:
45 mvcMainViewBase_¢ *MVCGetMainView(),

WO 97/14097 PCT/FI96/00530

19

abcMainView_c *view; .
abcDefaultProgram_c *abcProgram;

// confirmation dialog

5 | kuiConfirmationDialogControllerC_c *confirmationDialog;

10

15

20

25

30

35

40

abcSelectionController_c *selection;
private:
abcDefaultMainController_c(const abcDefaultMainController ¢ &);

abcDefaultMainController_c operator= ’
(const abcDefaultMainController_c &) const;

}s

#endif

/* ABCDEFAULTMAINCONTROLLER_H */

The implementation file "abccontmadfmx.cc" of the default main

controller class is as follows:

JAR KK KK K KR KRR OKK R KR R K R kKRR kR R K K kR Rk ok Kk Rk Rk R Rk ok R kR R KK

*

$RCSfile$

* * ¥

L R K R

35 oK A0 kK ook KK oK ok R o % K oK 3 K o R oK K oo o a3 3 o ok ok ok ok ko ok o ok 3K o o K K ok ok o ok ok o ok ok e ok o
x X

* * $Author$

* *
* * Copyright (¢) Nokia Telecommunications 1991 - 1995

*

L L T i I ey I m . I m"mMmMmMmmmm™,

*

* Application Framework generated file

* This is a implementation file for default main controller class.
* You should not edit this file!!

* RUNGOXMX version: @(#) Version 1.9 (t8mcl)

*

L BN I R]

o ok ok ok o o ok ok ok o o sk o ok o o o o ok ok ok ok ok ok o o R RO oK oK o o e R Rk ko oK o o ok o 3 ok o ok o ok ok ok ok ok

* ok

** Log

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

35

40

45

20

*®

HRRA AR R AR R R R R R AR R AR Rk kR Rk Rk kR ok ARk R kAR AR R

// MODULE IDENTIFICATION

ok e o o o ol ok o ok i ok o o K K K oK K K o o 3 oK ok K ok ok ke ok ok ok ko ok

static char rcsid[] = "$1d$" ;

|#include "abccontmadfmx.h” // Header of this main controller
#include "abcmainprogmx.h" // Header of program module

// message text for WM close confirmation dialog
const char *closeText =
"This will close the application.\nDo you want to proceed?"”;

/**t***t************#***#**************#**************************#****

*

* <PUBLIC> FUNCTION:
abcDefaultMainController_c::abcDefaultMainController_c()

e ok ok o ok ok ok sk sk ok ok e o ok ok ok ke ok kR ok ok ok ok ok ok ko gk Ak A ok R kR R KOR R R R KRR KRR R KRR R R kR ok kK Rk kK
*

*

* Constructor.

*
*****************’F**t*
*/
abcDefaultMainController_c::abcDefaultMainController_c

abcDefaultProgram c *abcPrg

abcProgram = abcPrg;
view = 0;

confirmationDialog = 0;

selection = 0;

WO 97/14097 PCT/F196/00530

10

15

20

25

30

35

40

45

21

/*ttt***:t:lx*#***##t**t#*#****#**********#*t*****#***#****************#*i

*

* <PUBLIC> FUNCTION:
abcDefaultMainController_c::~abeDefaultMainController_c()

dosk A ok ok ok ok AR ROk R R sk ok ko Rk R koK R kR R R R R Rk Rk Rk Kk
*

*

* Destructor
E

o g ook o ok o e kKK KR ok K R A R A R R Kk sk Rk kR R KRR Rk Rk ok ok ok ok
*/
abcDefaultMainController_c::~abcDefaultMainController_c() -

{
view->MVCHideFM();

delete view;
view = 0;

delete confirmationDialog;

" delete selection;

selection = 0;

/*******#*******************#t*******#****t****#*****#*****************
*

* <PRIVATE> FUNCTION: errAtom_c *abcDefaultMainController_c::MVCCreate()

e o ok ok o ok ok o o ok o ko ok kR ok oK o ok sk ok koK sk o kR ok Ok K K R K K ok koK K
*

*

* Controller creation
. ,

o oK o ok K ok ok ok koK o ok o sk ok ok ke s sk ok ok ok ok kK ko sk kR kR ko k ok Rk ok ok ok ok sk ok kokok
*/

errAtom_c

*abcDefaultMainController_c::MVCCreate()

errAtom_c *err = 0;

// Instantiate The MainWindow

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

35

40

45

22

/
view = new abcMainView_c(this),

// Motif things will be initialized (Only main view should do this)
/

err = view->MVClnitialize WindowingSystem(),

if (err) return(err);

// Create the main view

/!

err = view->MV CCreate(),;
if (err) return(err);

// instantiate confirmation dialog

"

confirmationDialog = new kuiConfirmationDialogControllerC_c(this),

err = confirmationDialog->MV CCreate(view->MVCGetParentCandidateQM());
if (err) return err;

// Instantiate sub controllers and create them

/

selection = new abcSelectionController _c(this);

err = selection->MV CCreate(view->MVCGetParentCandidateQM());
if (err) return(err);

return OK;;

}

J Ak R K KR K R K kR kR kKR R R Rk ko kR Rk KK KKK Rk
*

* <PROTECTED> FUNCTION: mvcViewBase_c
* abcDefaultMainController_c:MVCGetMainView()

sk 2k e ok ok ok ok 3k ok sk ke 3k dk ok 3k ok ok ok ok 3k 3k sk ok ol dk ke i ok ok o ok ok ok ok i sk sk ok 3k K e 3l dk ok o 3k e kb o o ok ke ak kR ok ok ok ok ok ok sk ok
*
*

* Returns the main view
*

o ok o o ok oK ok e ok e ok ok ok ok K K K 3k 3k ko ok o ok ok sk ok ok % ok ok ok ok ok ok 3k ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok o o ok ok 3K ok o ok ok o ok ok ok
*/

mvcMainViewBase ¢

*abcDefaultMainController_c::MVCGetMainView()

WO 97/14097 PCT/FI196/00530

10

15

20

25

30

35

40

45

23

return{view);

[R A R A oK o K R Ak ok ok R R oKk Kk R kR Rk ke ok ok R ok ek ko ok kR

*

* <PUBLIC> FUNCTION: void abcDefaultMainController_c::Abc WMClose Wanted()

KRR RO R oK K R o ok ok ko ok ok ok ok o ok ok ok e sk ok o ok o ok ok o ko e ok ok ok
*

*

* Shuts the application down
*

FARA AR R R R R R R Rk R R KRR AR R KRR R R R R R R AR R Rk kR ok ook ko ko ko ok
*/
void abcDefaultMainController_c::AbcWMClose Wanted()

f
t

if (view->MVClslconifiedQM())
{

view->MVCUnlconifyFM();
) .

confirmationDialog->AskConfirmation((char *) closeText);

}

JRE A A A K K K A KR o R S ok o oo o ok o R o ok ok e ook ok ok ok ko o o oK o kK ok ok ok ok o
*

* <PUBLIC> FUNCTION: void abcDefaultMainController_c::KuiActionConfirmed()

ok ok ok e ok ok ok ok ok K ok ok ot ko b ko ok ok ok ok Rk iR R oK R R K ok K KR K 3 ok o o oK ko ok ok ok ok ok ok ok o ok ok
*

*

* Shuts the application down
*

ARk Rk kA OR KoK K ok Rk K Kk R Rk R ok R Kok ok ook o ok o o o o ok ok

*/
void abcDefaultMainController_c::KuiActionConfirmed()

{
}

abcProgram->MVCShutdown();

[ek ok ok ok ok ok ok sk ok ok ok ko Rk ok ok Rk ok ok ok ok ok ok sk ook o ook ok oKk ok ek ok

*

WO 97/14097 ’ PCT/F196/00530

10

15

20

25

30

35

40

24

* <PUBLIC> FUNCTION: void
abcDefaultMainController_c::KuiActionNotConfirmed()

ok ok o ook o ok ok ok sk ok e ki e ok R kR ke ko ok sk Rk ok R ok ok ko R Rk R Rk Rk R kK
*
*

* Shuts the application down
* .

e o o ek ok o oo s ok ok ok ok ok ok ok K ok KRR R R KOk AR R R R R KR R R R R R R Ak R R Rk
*/
void abcDefaultMainController_c::KuiActionNotConfirmed()

// does't need any actions

A skeleton main controller class will be described next. The header file
"abccontmainmx.h" of the skeleton class is as follows (cf. the corresponding

template file shown in Appendix 1).

/***************************************#*#*******#***************#****

*

* * $RCSfiled
*

s ok i o ok ok ok o ok ok ok ok o o o ok s ook o K ko o o ko e ok ok oK R R o o o g R o K Kk o ok ok ok

*

* $Author$
*
*

Copyright (¢) Nokia Telecommunications 1991 - 1995

* X ¥ * ¥

ke ok ok ok ok ok ok ok e ok K oK kK ok ok sk kR R Rk ok ok kR R R Ak R kR R ok Rk ok kR ok ko Rk Rk

Application Framework generated file

This is a header file for skeleton main controiler class.
Complete the required functionality in this file.
RUNGOXMX version: @(#) Version 1.9 (t8mcl)

* ¥ ¥ ¥ X *

*
*
*
*
*
*
*

o o o o ok ok o o R R Rk R koK ok ko o ko ok o ok K Rk R R K K kR K
* *

** Log

*

Pt L TR L S TR E R L L S LA AR A S A bl bk bbb bbb b s)

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

35

40

45

25

#ifndef ABCMAINCONTROLLER_H
#define ABCMAINCONTROLLER_H

/* MODULE IDENTIFICATION

o A KR R KRR R R KRR Kk

static char abccontmainmx_rcsid[] = "$1d$" ;

#include "abccontmadfmx.h"

class abcMainController_c
: public abcDefaultMainController_c

{
public:

abcMainController_c(abcDefaultProgram_c *abcPrg);
~abcMainController c();

virtual errAtom_c *MVCCreate();

// AF_ TOKEN START#public_methods#

/! AFTool generated abstract partner methods.

// Don’t add your own code between AF_ TOKENS
// AF_ TOKEN END#public_methods#

/I AF_TOKEN_START#abs_partner methods#
// AFTool generated abstract partner methods.
// Don’t add your own code between AF_TOKENS

void AbcUpdateButtonActivated (name_t name, intlD_t identifier, float maxPower,

float minPower);
void AbcSelectButtonActivated();

void BuiExitWanted(); // inherited from a gui component
void BuiPrintSetupWanted(); // inherited from a gui component
void BuiPrintWanted(); // inherited from a gui component

void AbcControllerSelected(intID_t identifier);
// AF_TOKEN END#abs_partner_methods#

protected:

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

35

40

26

private:

abcMainController _c(const abcMainController_c &);
abcMainController ¢ operator=(const abcMainController_c &) const;

s

#endif
* ABCMAINCONTROLLER H */

The implementation file "abccontmainmax.cc” of the skeleton main

controller class in turn is as follows.

D e e L L L
*
* ¥

* * $RCSfiled

* ok

ok o ok ok ok ok ok o i ok ok ok sk ok ok ok 2k ok e ok o ok o e ok o ok 3k ok ke ok sl ok ko A ok o R ok ok ok e ok ok ok ok sk sk ok KoK ok Ok Kk KOk R ok ok
* %

* * ¢ Author$

* Xk

* * Copyright (c) Nokia Telecommunications 1991 - 1995

*

s 3k ok ok ok o ok ok 3k ok ok sk o oK K o oK ok Kk ok ok ok ok ke R ok kR Ak bk kR okok ok ks ok ok ok Rk kR Rk k ok ke k ok ak ke ok

Application Framework generated file

This is a implementation file for skeleton main controlier class.
Complete the required functionality in this file.

RUNGOXMX version: @(#) Version 1.9 (t8mcl)

* K X X * ¥

LR K 2R 2R B I

3 ok o ok ok ok ok ok e sk ok ok ok o o o s ok o ok ok ok ok ok ok o o ok ok ok sk sk ok ok o e e ok ok ok ok ok ok ok ok ok ok ok ok ok ok e ke kok ok ok ok ok Rk ok
* %

** Log

*
ok e e ok ok ok e ok sk kR kR kR Rk R R kR Rk Rk ok ROk R Rk kR kR Rk ok Rk kok ok kK Rk k[

/f MODULE IDENTIFICATION

A 0 ok ok ke ok ok o ke ok ok ook e o sk e ok ok ok ok ok o ok ok ok ok s ok ok ok ok ok o o ok ok ok ke kK KR

static char resid[] = "$1d$";

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

35

40

45

27

#include <wmtracmx.h>

// trace object
extern wmtlrace c *trace;

#include "abccontmainmx.h" // Header of this main controller
#include "abcmainprdfmx.h" // Header of the program module

[ok KRk ROk Rk kR R Rk R R R R R KKk kR kR R K ok ok

*

* <PUBLIC> FUNCTION: abcMainController_c::abcMainController_c()

S s A o ok ok e ke o ok ok ok ok ok sk ok Bk ok ke o ok o Ok o I OK Sk K ok ROk ok oK Ok R ok ko sk sk ok o ok d o ok ok e o o ok ko ok
*

*

| * Constructor.
*

o o o oK o 3 o ok ok oK ok ko o o ok ok ok ok ok ok o o ok ok o o ko ok ok ok ok ok ok ok o ok ok o koK ok 3 ok ok o ok ok o ok ok ok ok oK ok o o o ok Rk

*/
abcMainController_c::abcMainControlier_c
(

abcDefaultProgram_c *abcPrg

)

: abcDefaultMainController_c(abcPrg)
{

e e e e L L
*

* <PUBLIC> FUNCTION: abcMainController_c::~abcMainController c()

sk ok 3k ok ok ok ok ok o oK ok ok o R o o s o o o 3 o o K o o R ok oK o o ko o o o o ok R o o e ok ok ok ok ok ok e ok ok ok ok ok ok ok ok
*

*

* Destructor
*

s o e e ok e Aok o ke ook ok ok ok gk ok ok ok ok ak o ok 2k ok ok ok ok 3k ok ok ol ok ok o ok ok ok 3k oK ok ok ok oK ko ok ok ok ok ok ok koK ok ok o o ok ok ok ok ok ok ok ok

*/
abcMainController_c::~abcMainController_c()

3
1

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

35

40

45

28

R e L L L e L e L e PR e e s
*x

* <PUBLIC> FUNCTION: abcMainController_c::MVCCreate()

s s o e ol ok o e ok ok o o R o kol o s ok ok ok oo ks o o ok oo o ok o ok o o s o o e e o ok o ok ok ok ok ok
*
*

* Controller creation
. :

e e o s ke ok ok ok e ook ok ok ok ok o ok e o ok ok ok e ok ol ok ke o ok ol ok ok ok ok ok ok ok ol ok ok ok ok o o ol ok o ol o ol K oK o ok o o ok e o ok ok
*/
errAtom_c *abcMainController_c::MVCCreate()

{

errAtom_c *err = abcDefaultMainController_c::MVCCreate();
// add actions needed in conroller construction here

return err,

JER AR R R KRR KRR R KR AR KRR KRR R AR KRR AR R ARk KRR KRR AR Rk X

*

* <PUBLIC> FUNCTION: void abcMainController c:: AbcUpdateButtonActvated
(name _t name, intID _t identifier, float maxPower, float minPower)

s 3k ok 3 ok ok ko ol o ok o ok sk e o e ok ok ok ok sk sk ok ok ok ok ok ok ok ok sk ok ok ak koK ok ok i ok ik ok ok 3k i o ok ok ok o sk ok ok o e ok 3k ok e ok ok ok ok ok ok ok koK ok
*

* Implementation of an abstract partner method

*

*

o oK ok o o a5 o ok ok o ok ok ok I O K K K 3 K K R K K ok ok 3 o o o ok ok o o ok o o 4 o ok ok o ok ok o ok ko ok ok o ok o ok ok ok ok ok
*/

// AF_ TOKEN#abc2# - Don’t remove this token

void abcMainController_c::AbcUpdateButtonActivated (name_t name, intID_t
identifier, float maxPower, float minPower)

{

WO 97/14097

10

15

20

25

30

35

40

45

PCT/FI96/00530

29

AF_TRACE("void abcMainController_c::AbcUpdateButtonActivated (name_t name,

intID_t identifier, float maxPower, float minPower)");
// Add your own code here.

}

/***#*#*************#****t***#*

*

* <PUBLIC> FUNCTION: void abcMainController_c::AbcSelectButtonActivated()

e 3 3 3k 3 ok ok ok ok ok K ok ok ak ok Ak ook k3 ok 3 ko k3 ok ok ak ok oK ok ok ok sk ok dk 3k ak sk ak o ok o KOk 3k ok ok ok ok 3 e sk e sk i e ook o ok e o ok s sk sk ok
*

* Implementation of an abstract partner method
*

*

e 35 ok 2k o o ok ok ok ok o ok ok ok o ok o oK ok K ok o ok ok o ok k 3k ok ok ok 3 ok 3ok %k ok ok ok o ok oK o ok ok o o o ko ok oK o o o oK oK o ok ok o ok ok ook K

*/
// AF_TOKEN#abc3# - Don’t remove this token
void abcMainController_c::AbcSelectButtonActivated()

{

AF_TRACE("void abcMainController_c::AbcSelectButtonActivated()");
/' Add your own code here.

}

KA o o K R R o AR oK o K K KKK R KK R R R KR KRR KK R K R R R R K

*

* <PUBLIC> FUNCTION: void abcMainController_c::BuiExitWanted()

e ok ok o 3 ak ak ok o ok ok ok ok Ak 3K ok 3K K Kk ok 3K 3K ok K ok 3k sk ok 3k sk 3k 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ale i ok ok 3k ok ok ok ok kK 3k ok ke o ale e o ok g ok
*

* Implementation of an abstract partner method
*

*

St 3 ok 30 ok ok ok ok oKk ok ok ok o ok ok ok e ook ok s o ok o oK K oK K ok o ok oK o R oK 3K oKk Ak oK R K o K o kK R o o o o ok ok ok ok
*/

// AF_TOKEN#buil2# - Don’t remove this token

void abcMainController_c::BuiExitWanted()

{

AF_TRACE("void abcMainController_c::BuiExitWanted()");
// Add vour own code here.

WO 97/14097 : PCT/FI96/00530

10

15

20

25

30

35

40

45

30

}

/#t********#*********#*****tt#**#t#*#ttt*t#t#ttttt#tttt***tttttt*t*#*tt

*

* <PUBLIC> FUNCTION: void abcMainControlier_c::BuiPrintSetupWanted()

IR T R R A R L R L L L I R L)
*

* Implementation of an abstract piartner method
*

*

s ok o e e ok o ok ook o ok ok s o ko o R oK R o R K R R o o R R R o R K R o o o R o o R R kK
*/

// AF_TOKEN#buil3# - Don’t remove this token

void abcMainController_c::BuiPrintSetupWanted()

{

AF_TRACE("void abcMainController_c::BuiPrintSetupWanted()");
// Add your own code here.

}

/*************#************************t*#*************t***tt***t***t**

*

* <PUBLIC> FUNCTION: void abcMainController_c::BuiPrintWanted()

e ok o ok o o ok ok e o o oK o ok ok ok ik ok KK ok ok o Kk R R K R KR KR R Ok Rk Rk Rk Rk R K Kok ok

*

* Implementation of an abstract partner method
*

*

***********t***t*******tt**tt*t******t***********tt*t****#************
*/

// AF_TOKEN#buil4# - Don’t remove this token

void abcMainController_c::BuiPrintWanted()

{

AF_TRACE("void abcMainController_c::BuiPrintWanted()");
// Add your own code here.

}

/*t****t*******t**t***i*t****t********t*****m****tt*t****#*************

*

WO 97/14097 PCT/FI96/00530

10

15

25

30

35

31

* <PUBLIC> FUNCTION: void abcMainController_c:: AbcControllerSelected(intID _t

identifier)
e 3k o afe ke e o e e ok ok e kol ok ok ok ok e ke ke dk o ok sk ok ok ok ok ok ke ol ol ko ok ok kol o ok e e ok o 3k e e ofe o o e s o e e e ok e ok ol ok ok ok ol ok ok ok ok

bR

* Implementation of an abstract partner method
*

*

309 3 o o K K e e ok ok 3 o 3 o o o e o 3 ok o ok ok ok ke ok ok ol o oK o ok ok ok 3k 3 o ok ok ok ok ok 2k ok o ok ok i ok o ok ok o ok o ok ok o Kok K
*/

/I AF_TOKEN#abc7# - Don’t remove this token

void abcMainController_c:: AbcControllerSelected(intID _t identifier)

{

AF_TRACE("void abcMainController_c:: AbcControllerSelected(intID_t
identifier)");
// Add your own code here.

The designer implements the functionality reguired by the application
by adding a sufficient amount of code to the skeleton classes. The user
interface is supplemented for example with the aforementioned X-Designer™
tool by using generated descriptions of the visual view classes having the
format of the X-Designer™.

The classes of the model part, BaseStation_c and
BaseStationGroup_c (cf. Figure 4), have aiready been implemented in the class
library of the model part, wherefore they do not have to be carried out in
connection with the present application.

As it is apparent from the above, the code generator creates defauit
and skeleton classes automatically by modifying the corresponding template
files on the basis of the data provided in the description file of the application.

It has been described above in detail how the application framework is
generated. This example thus described a situation where an application is
created for the first time. A situation where changes must be made to the
application framework will be examined next. The example relates to a situation

where the operator using the network management system requests for the

WO 97/14097 PCT/F196/00530

10

15

20

25

30

32

addition of a new property, a so-called priority service, to the base station
controller. In the network of this operator the clients are divided into two
classes: those who have a gold card and those who have a silver card. If all the
channels are being used during heavy traffic and a user with a gold card makes
a call, one of the users of a silver card is removed from the channel. This
service requires a new parameter indicating whether the priority service is being
used.

Figure 7 illustrates the change required in the user interface. As
Figures 3a and 7 show, the window will be provided with a new parameter
"priority mode" which may have two values (yes or no).

Figure 8 illustrates the change required in the object diagram that was
shown eariier in Figure 4. Figure 8 only shows the part of the diagram that is
changed. The diagram will thus be provided with a new class
"BaseStationController_c" the attribute of which is "priorityMode” and the
method is "SetPriorityMode".

It is also nofed in this connection that the updating of the radio
network parameters in a base station takes a long time. Therefore the
application must be provided with a so-called working dialog that indicates to
the user that the operation is still in process. Figure 9 illustrates a working dialog
window.

The addition of the priority service will be described first. in order to
implement this change (the addition of a new' parameter to the methods
"ShowParametersFM" and "AbcUpdateButtonActivated” that the change
concerns), the new boolean_t parameter "priorityMode" is added to the
declaration of the methods in the description file 12 of the application. The
frame below shows a part of the description file shown above. The frame shows
in boldface the additions that are made to the description file when the priority

service is added.

#...

(public_method "#abc1# void ShowParametersFM(name_t name, intID_t identifier,
float maxPower, float minPower,
boolean_t priorityMode)"

WO 97/14097

10

15

20

25

30

35

PCT/FI96/00530

33

zabs _partner ""
(abs_partner_method
"#abc2# void:: AbcUpdateButtonActivated(name_t name, intID t
identifier,
float maxPower, float minPower
boolean_t priorityMode)"

The identifiers #abc1# and #abc2# indicate that logically the same
methods are still used (i.e. the implementation written for the methods remains
the same) even though the declaration changes.

When the required changes have been made to the description file,
the code is regenerated by means of the code generator. The code generator
then updates in the header files of the skeleton main view and main controller
classes the parts that are to be regenerated. The parts to be regenerated are
indicated with the character strings AF_TOKEN_END and AF_TOKEN_START
and they can therefore be updated without any other parts in the file being
changed (AF_TOKEN_START is the initial character and AF_TOKEN _END is
the stop character for the part to be regenerated.)

Befcre the change, the shared header file of the skeleton main view

and abstract partner classes is as follows:

class abcMainViewAbsVP_c¢
: public abcDefaultMainViewAbsVP_c

{
public:

// AF_TOKEN_START#abs_partner methods#
/!l AFTool generated abstract partner methods.
// Don’t add your own code between AF_TOKENS

virtual void AbcUpdateButtonActivated (name_t name, intID_t identifier, float
maxPower, minPower) = 0;
virtual void AbcSelectButtonActivated() = 0;

// AF_ TOKEN END#abs_partner_methods#
|

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

35

40

34

class abcMainView_c¢
: public abcDefaultMainView_c
{
public:

/...

// AF_TOKEN_START#public_methods#

// AFTool generated abstract partner methods.

/f Don’t add your own code between AF_TOKENS

virtual void ShowParametersFM (name_t name, intID_t identifier, float maxPower,
minPower) = 0;

virtual void AbcSelectButtonActivated() = 0;

// AF_TOKEN_END#public_methods#

};}

After the change, the situation is as follows (the added parts are

shown in boldface).

class abcMainViewAbsVP_c
. public abcDefaultMainViewAbsVP_c

K
public:

// AF_TOKEN_START#abs_partner_methods#
// AFTool generated abstract partner methods.
// Don’t add your own code between AF_TOKENS

virtual void AbcUpdateButtonActivated (name_t name, intID_t identifier, float
maxPower, float minPower, boolean_t priorityMode) = 0;
virtual void AbcSelectButtonActivated() = 0;

// AF_TOKEN_END#abs_partner_methods#
3

class abcMainView_c
: public abcDefaultMainView_c
{
public:

...

// AF. TOKEN_START#public_methods#

// AFTool generated abstract partner methods.

WO 97/14097 PCT/FI96/00530

10

15

25

30

35

35

// Don’t add your own code between AF_TOKENS

virtual void ShowParametersFM (name_t name, intID _t identifier, float maxPower,
float minPower, boolean_t priorityMode)= 0;
virtual void AbcSelectButtonActivated() = 0;

/{ AF_TOKEN_END#public_methods#

The above-described header file of the skeleton main controller claés
in turn is as follows after the change (only a part of the file is shown, the

changed parts are in boldface).

class abcMainController_c

: public abcDefaultMainController ¢
{
public:

/...

// AF_TOKEN_START#abs_partner_methods#

// AFTool generated abstract partner methods.

// Don’t add your own code between AF_TOKENS

void AbcUpdateButtonActivated (name_t name, intID_t identifier, float maxPower,
float minPower, boolean_t priorityMode);

void AbcSelectButtonActivated();

void BuiExitWanted(); // inherited from a gui component
void BuiPrintSetupWanted(); // inhented from a gui component
void BuiPrintWanted(); // inhenited from a gui component

void AbcControllerSelected (intID_t identifier);

/f AF_TOKEN_END#abs_partner_methods#
...

Q.
f»

Adding the aforementioned parameter (boolean_t priorityMode)
automatically to the declaration of the 'void AbcUpdateButtonActivated()”
method in the declarations of the skeleton main controller class and the
skeleton main view abstract partner class illustrates how éasy it is to add new
properties to the application framework with the arrangement according to the

invention. The aforementioned addition was carried out by making the addition

PCT/F196/005830

WO 97/14097

10

20

25

30

35

36

to the description file and by regenerating the code by the code generator. it
should be noted that also the default classes are regenerated in this
connection, but in this example no changes occur in the default classes (since
no changes concerning them were made to the description file).

The partner method to be changed in the implementation file of the
skeleton main controlier class is identified with the identifier #abc2# (provided in
the description file) following AF_TOKEN. The change takes place in the
following manner: the code generator reads the file and eliminates the
characters beginning from the line following AF_TOKEN to the first "{" sign and
writes in that place the new declaration of the partner method (on the basis of
the new declaration of the description file). The code generator then goes oh
scanning the file until it sees the first AF_TRACE character string. The code
generator replaces the characters in the brackets foliowing AF_TRACE with a
new partner method declaration. The code generator then scans the file
backwards until it sees the character string <PUBLIC> FUNCTION:. The code
generator eliminates the characters following <PUBLIC> FUNCTION: until the
next line feed character and writes in their place the new partner method
declaration (N.B. Even though in the code example given below the declaration
of the abstract partner method continues on the following line, the line feed

character only comes at the end of the method declaration.)

/*#t****#t**#*##**********t*****#t#***#***#tt#***************t*t#*t*#t*
* ¥k

* <PUBLIC> FUNCTION: void abcMainController_c:: AbcUpdateButtonActivated (
name_t name, intlD_t identifier, float maxPower, float minPower, boolean_t
priorityMode)

R A KRR KKK R o KK KRR K R ok o ko ok ok ok R ok ok ok o ok ok e o o e

* %k

* Implementation of an abstract partner method
*

*

B Ak R kR oK K R R ok oK o oo ok sk sk e o ook ok ok ok ok o

’t#/

// AF_TOKEN#abc2#

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

37

void abcMainController_c:: AbcUpdateButtonActivated (name_t name, intID_t
identifier, float maxPower, float minPower, boolean_t priorityMode)

{
AF_TRACE("void abcMainController_c:: AbcUpdateButtonActivated (name _t
name, intID_t identifier, float maxPower, float minPower, boolean_t prioritylMode)");
/!l Add your own code here.

// the programmer's own code may be provided here

The above-described changing of the method declaration (i.e. adding
the parameter to the declaration) is an example of how a connection is
maintained between a code generated by the code generator and a code
written by the programmer. In this example, the character string "abc2" is an
identifier which corresponds to the method (UpdateButtonActivated) and by
means of which the connection is maintained. The programmer had earlier
written a code manually in the frame generated for this method in order to
update the parameters to the base station controller.

The method "ShowParametersFM()" is changed in the implementation
file "abcviewmainmx.cc” of the main view class in the same manner as the
above-described abstract partner method in the implementation file of the main
controller. The identifer corresponding to this method is "abc1”, as the
description file of the application shows. By means of these identifiers given in
the description file, it is known even after the changes made to the description
file and the regeneration of the skeleton classes to which part of the skeleton
class each change corresponds.

The addition of the priority service to the application has been
described above. In the foliowing, the addition of the aforementioned working
dialog will be described.

In order to carry out this change, the header files of the main controller
classes must be supplemented with the header file of the working dialog

component, the abstract partner class of the working dialog must be inherited to

WO 97/14097

38

PCT/FI96/00530

the main controller, the abstract partner methods of the working dialog must be

declared, and a variable must be declared as a pointer to the working dialog

object. A pointer must be initialized in the implementation file of the main

controlier class to the working dialog, a new working dialog object instance must

5 be created, the working dialog object dialog must be deleted and the abstract

10

15

20

25

30

35

partner methods of the working dialog must be implemented.

The change is carried out in practice by writing the line:

(service “working_dialog”)

to the definition part of the main controller in the description file

(reference numeral 12, Figure 1) of the application and by regenerating the

application framework. In the following, the changes caused in the regeneration

by a change made to the description file are shown.

The code generator regenerates the header file "abccontmadfmx.h” of

the default class to which header file the header file of the working dialog

component has been added, the abstract partner class of the working dialog

has been inherited and a link to the working dialog object has been added to

the protected part of the class (these changes are shown in boldface):

/1 for working dialog
#include "kuiccwrkdigmx.h"

|7 ...

class abcDefaultMainController_c
: public mvcMainControllerBase_c,
public kuiConfirmationDialogControllerAbsCP_c,
public abcMainViewAbsVP_c,
public abcSelectionControllerAbsCP_c,
public kuiWorkingDialogControllerAbsCP_c
{
...
protected:
I/
// working dialog
kuiWorkingDialogControllerC_c *workingDialog;

1

PCT/FI96/00530

WO 97/14097

10

15

20

25

30

35

40

39

The code generator also regenerates the implementation file
"abccontmadfmx.cc” of the default class, wherein

1. the working dialog pointer is initialized:

abcDefaultMainController_c::abcDefaultMainController ¢

(

)
{

abcDefaultProgram_c *abcPrg

...
workingDialog = 0;
)

2. the working dialog is deleted:;

abcDefaultMainController_c::~abcDefaultMainController_c()
{
/...

delete workingDialog;
workingDialog = 0;

} .

, and

3. a new working dialog object instance is created:;

errAtom_c
*abcDefaultMainController_c::MVCCreate()

{
...

// create new working dialog

workingDialog = new kutWorkingDialogControllerC_c(this);

err = workingDialog->MVCCreate(view->MVCGetParentCandidateQM());
if (err) return(err); '

Abstract partner declarations are regenerated in the header file
"abccontmainmx.h” of the skeleton main controller class, the abstract partner

method of the working dialog being included therein:

class abcMainController_c
: public abcDefaultMainController_c
{
public:
/..
// AF_TOKEN_START#abs_partner_methods#
/! AFTool generated abstract partner methods.

WO 97/14097 PCT/F196/00530

10

15

20

25

30

35

40

40

// Don’t add your own code between AF_TOKENS

void AbcUpdateButtonActivated (name_t name, intID_t identifier, float maxPower,
float minPower, boolean_t priorityMode);
void AbcSelectButtonActivated();

void BuiExitWanted(); // inherited from a gui component
void BuiPrintSetupWanted(); // inherited from a gui component
void BuiPrintWanted(); // inherited from a gui component

void AbcControllerSelected (intlD_t identifier);
virtual void KuiCancelWanted(); // for working dialog

// AF_TOKEN_END#abs_partner_methods#
/...

}

The code generator identifies the part to be regenerated by means of
AF_TOKEN_START and AF_TOKEN_END and it can therefore change a part
of the file so that the rest of the code remains the same.

A frame is generated in the implementation file "abccontmainmx.cc” of
the skeleton main controiler class for the implementation of the abstract partner

method:

/**#*********************
* <PUBLIC> FUNCTION: void abcMainController_c::KuiCancel Wanted()

S ok ok o ok o ok ko ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ook o ok ok ok ok ko ok o ik ko sk s sk ok ok ke ok ok sk ok R R ok kO ok Ok ok o
* %

* Implementation of an abstract partner method
* .

l*
o ook ek sk ok R ok ko ok ok sk ok ok ok o K kR R Rk R ROR R R KR R R R R R R K Rk KKK R KK
// AF_TOKEN#kui3# - don’t remove this token

void abcMainController_c::KuiCancel Wanted()

{
AF_TRACE("void abcMainController_c::KuiCancel Wanted()");

// Add vour own code here.

In this frame of the abstract partner method, the designer implements
a functionality that is to follow the pressing of the Cancel button of the working

dialog.

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

35

41
The designer activates (shows on the display) the working dialog by
writing the request workingDialog~-ShowlLongDelay(MESSAGE_TEXT) before

the part of the code that begins the time-consuming operation, for example:

void abcMainController_c:: AbcUpdateButtonActivated (name_t name, intID_t
identifier, float maxPower, float minPower, boolean_t priorityMode)

{

AF_TRACE("void abcMainController_c:: AbcUpdateButtonActivated (name_t
name, intID_t identifier, float maxPower, float minPower, boolean_t priorityMode)");
// Add your own code here.

// a time-consuming operation begins
workingDialog->ShowLongDelay(MESSAGE_TEXT);
basestation->SetParameters(maxPower, minPower, priorityMode)

}

The above example (the addition of the working dialog) shows how
easy it is to add a new property to the application framework. The change was
implemented by adding one line to the description file and by regenerating the
application framework on the basis of the changed description file. The
abstraction level of the application also remains high since only the methods
"KuiCancelWanted()" and "ShowlLongDelay()" are shown in the application part
visible to the designer from the working dialog service. The more complicated
code for adding the working dialog object to the application was generated
(automatically) to a default class that is not visible to the designer.

Even though the invention is described above with reference 1o the
examples according to the accompanying drawings, it is clear that the invention
is not restricted thereto, but it can be modified within the scope of the inventive
idea disclosed above and in the appended claims. Even though an object-
based application is described above, it is in principle possible to use a similar
arrangement aiso in other types of arrangements. Similarly, the method can
also be used for producing services in other systems besides the network
management systems, even though the Iatter systems constitute an
advéntageous environment of implementation for the reasons given at the

beginning. The means according to the invention can form a part of such a

WO 97/14097 ' PCT/FI96/00530

42

system providing services or the method can be carried out separately from the

system and a finished application can be transferred thereafter to the system.

WO 97/14097 PCT/F196/00530

10

15

20

25

30

35

40

45

43
Appendix 1 - examples of template files

Template for header file of default main controller class.

JEkkk ko okkokkoR kR kR kR ok KRk R Rk R kR kR kR ko kok ek ok kR R R Rk ok kK ok &
* %

* %

** $RCSfile$

* *

*

e e sk s sk ok o ek ok e ook ok ke ok ke ko ook ok ok o o ok o o o o o ol ok ok ok ok ok ok o ok o ok o ok ok o o ok o ok o ook K ok o o o o o o ok
* %

* * $Author$

* *

* * Copyright (c) Nokia Telecommunications 1991 - 1995

*

o e o e s ok ok ook o ok ok ok ok o ok ok ok s ok sk ok ok o ok ko ok ok ok ok ok ok ok ok o ok ok ok ok ok sk ok o 3 o oK K o o K o 3 oK o K o o o ok 3 oK oK ik ok K K
* ok

* * Tempilate file for Application Framework generated class

* %k

*

3 3k ok ok sk ke 3ok ok 3 3k ok sk ok ok ok ok ok ok sk ok o sk ok ok sk ok ok ok ok ok ok ok sk 3k sk ok ok ok 3k ok 3k ok ok ok sk ok ok 3k ok ok ik o ok o ok o o ok ok ok ok ok ok ok ok ok ok

* %k

1** Log

*
B R R L Y,

BODY_START

#ifndef FFTDEFAULTMAINTCONTROLLER H
#define FFTDEFAULTMAINTCONTROLLER_H

/* MODULE IDENTIFICATION

b L L e L PPy

static char fficontmadfmx_resid[] = "Id" ;

#include <stdio.h>

#include <stdlib.h>

#include <weratomx.h> /! Errors

#include <kuicocfmdlgmx.h> // controller confirmation dialog
#include "MAINVIEW_ H" // Main View and abstract view partner

// header files of sub controllers
INC_SUB_CONTROLLERS

class fftDefaultProgram c;

WO 97/14097

10

15

20

25

30

35

40

45

44

PCT/FI96/00530

RENAMER_CLASSES

class fftDefaultMainController_c
: public mvcMainControllerBase c,
public kuiConfirmationDialogControllerAbsCP_c,
public fftMainViewAbsVP_cINHERIT_ABS
{
public:
fftDefaultMainController_c(fftDefaultProgram_c *fftPrg);
virtual ~fftDefaultMainController_c();
virtual errAtom_c *MVCCreate();

// defived from abs. view partner
virtual void Fit WMClose Wanted();

// confirmation controller abstract partner
// methods

virtual void KuiActionConfirmed();
virtual void KuiActionNotConfirmed();

protected:
mvcMainViewBase ¢ *MVCGetMainView();

MAINVIEW _C *view;
fftDefaultProgram_c *fHtProgram;

// confirmation dialog
kuiConfirmationDialogControllerC_c *confirmationDialog;

SUB_CONT_DECLARATIONS
private:
fftDefaultMainController_c{ const fftDefaultMainController ¢ &):

ffiDefaultMainControlier_c operator=
(const fftDefaultMainController_c &) const;

#endif
/* FFTDEFAULTMAINCONTROLLER H */

WO 97/14097 PCT/F196/00530

10

15

20

25

30

35

40

45

Template for implementation file of defauit main controlier class.

/***#*****************************t*****#**##t****#‘*#************#*#**

**

$RCSfile$

*

A A R A ok Aok Rk A A kK Rk R M o ok a3k K o o ok ok e o ok ok ke ok o ok ok ok ok ok ok ok ok o ok ok kool e

*
*
* SAuthor$
*
*

Copyright (¢) Nokia Telecommunications 1991 - 1995

LR SR I R

ok oK 2 ok o ok ok ok ok ok o 3k ok ok 3ok ok ok ok o ok ok ok ok ok e o o Ok ok ok ok o o Ok ok ok ok o o ok o ol ok ok i ok ok kel ke ok ok ok ok ok ok ol ok ok o ke ok o o
* %

* * Template file for Application Framework generated class
* *

*
e o o o ok ok o ke ko ok ok o ok ok sk ok ok ok ok ok 39k oK 3 ok ook o ok ok ok 3k ok sk o ok ol ok ok o o ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K

* *

** SLog

*
******t**************************t**********************#***t*#****t**/

BODY_START

// MODULE IDENTIFICATION

o ok ok ook ok ok ok ok ok sk ok ook sk ok ok kR koK ok kb ko Kk kKRR R K KR KRR KK KKK

static char resid[] = "Id" ;

#include "fftcontmadfmx.h" // Header of this main controller
#include "fftmainprogmx.h" // Header of program module

// message text for WM close confirmation dialog
const char *closeText =
"This will close the application.\nDo you want to proceed?";

e e ok o ok ok o ok ek s o ko sk o sk ok ok A oK ok ok kR ok R Rk Rk ok ok kR R R R KRR R R KRRk kK Rk ko

%* %k

* <PUBLIC> FUNCTION: ffiDefaultMainController_c::fftDefaultMainController_c()

WO 97/14097 ' PCT/FI96/00530

10

16

20

25

30

35

40

45

46

%

Il I I T T T T

* %
*

* Constructor.
*

ok K ok Ak ok dk sk 3 dke ok ok ok o ok ke 3k ok ok e ok ke e ok ok ok 3 s o e ok sk ok o ok ke ok ke sk sk ol ok 3k ok 3k ok ok 3k ke gk ok ok ok K ok 3k ok ok ol ol ok ok ok ok ok ok ok
**/
fftiDefaultMainController_c::fftDefaultMainController_c

ffiDefaultProgram_c *ffiPrg

)

{
fftProgram = fftPrg;
view = 0;

confirmationDialog = 0;

SUB_CONTROLLERS _TO_NULL

T e A LA LA e R LT L
* ok

* <PUBLIC> FUNCTION:
fftDefaultMainController_c::~fftDefaultMainController_c()

e ok o s sk 3k ok 3 sk 3k ok sk ok ok ok 3k ak 3k k3 ok X 3 ok ak ok 3k ok ok sk K ok dk 2k 3k 3 ok ok ok 3k k3 ok ok ok ok ok K ok ok ak ok ok ok ok 3k 3k sk ok ak ak ok ak ok ok ok k
* *
*

* Destructor
*

ok 2k o Ak ok 3Kk o o 3 oK ok o ok ok e i ok ok 2 ok o 3k ok 2k koK K ok ok ok ok k3 ok K ka3 ok ok ik ok ok o K ok ok 3k 2 ok dk ak ok ok ok ok 3k ok ok ok ok K ok ok
**/
ffiDefaultMainController_c::~fftDefaultMainController_c()

{
view->MVCHideFM();
delete view,
view = 0;

delete confirmationDialog;

DELETE_SUB_CONTROLLERS
SUB_CONTROLLERS_TO_NULL

WO 97/14097 PCT/F196/00530

10

15

20

25

30

35

40

45

47

}

A L L i

* ok

* <PRIVATE> FUNCTION: errAtom_c *fftDefaultMainController_c::MVCCreate()

ok o e o e o ok ok ok ok ko ok ok koK ke ok ok ok ok kK ol o ok o K ok o ok o ok ok ok ok 3R K 70 3 oKk 36 8 O ok ok ok ok ok ok ak ok ok ol ok ok ok ok ok ok ok o ok
*%

*

* Controller creation
*

ok o o ook sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok o sk o o o ok ol ok ok ook ok e ok ok o e o ok o o o o ok o ok o o ok ok ok o o ok ok
t*/

errAtom_c

*fftDefaultMainController_c::MVCCreate()

errAtom_c *err = 0;

// Instantiate The MainWindow
/
view = new MAINVIEW_C(this);

// Motif things will be initialized (Only main view should do this)
1 ’

err = view->MVClnitializeWindowingSystem();

if (err) return(err);

// Create the main view

1

err = view->MV CCreate();
if (err) return(err);

// instantiate confirmation dialog

confirmationDialog = new kuiConfirmationDialogControllerC_c(this);

err = confirmationDialog->MVCCreate(view->MVCGetParentCandidateQM());
if (err) return err;

// Instantiate sub controllers and create them
/!

CREATE_SUB_CONTROLLERS

return OK;
}

WO 97/14097 PCT/F196/00530

10

15

20

25

30

35

40

45

48

AR R L T T T e nm
*%

* <PROTECTED> FUNCTION: mvcViewBase ¢
*ffiDefaultMainController_c:MVCGetMainView()

o o o o oo kb ok ok s e o o o o o o ok ko oo o ok o ook ok ok ok ok ok o o ok ok ok o o ok o ook o o o R oK K K KR O
* %
*

* Returns the main view
*

sk ok ok o ok ok ok ok ok ok ok ok ok ook ok ok ok o o ok ok ak ok sk ok ok ok sk ko sk e o ok ok ok ok o o o ok ok o o ok o ok ok o ok o o o o ok e o ok o o
* %/

mvcMainViewBase ¢
*fftDefaultMainController_c::MVCGetMainView()
{

}

/**t**tt****‘**#****************#t#t‘t****tt*tt*t##*t*#t***t#**#**#*###

return(view);

* %

* <PUBLIC> FUNCTION: void fftDefaultMainController_c::FftWMCloseWanted()

sk ok e ok kol ok ok ok ok ok kok sk ok sk ok ok ko ok ok ok ok ok ok ok ok ok sk ke kkok ok ok ok kkk kkk ki kdd ok kk bk ok ok kkkkdkk ok ko ok k%
* %k
*

* Shuts the application down
*

oK K R K K R o o ok ok R R R ok ok o o o o oKk o ok o o oK o K R o K o o o o o o o ok e ok ke
¥/

void fftDefaultMainController_c::FftWMClose Wanted()

{
1f (view->MV ClslconifiedQM())

{
H

view->MV CUnlconifyFM();

confirmationDialog->AskConfirmation((char *) closeText):

}

JEEER AR AR R AR KRR R R ROR R AR R AR R KRR R AR R R AR AR R Rk kR Kk
* %

* <PUBLIC> FUNCTION: void fftDefaultMainController_c::KuiActionConfirmed()

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

35

40

45

49

oo ok o o ok ok ook ok ok ok ok ok ok o o ok ol ok ok ok ook ok ok o ok R R KR o o ok o o ool o o o o o o ok ok e oo ook o o o o o o

* ¥k
*

* Shuts the application down
*

ok oo oKk K oo ko KK KR K o oK o ok o o o o ok ok ko o o ok ok o o o o oo o o oo o oo ook oo o e o o
* */
void fftDefaultMainController_c::KuiActionConfirmed()

}

fftProgram->MYV CShutdown();

JRAE AR AR ARk KRR AR R Rk Rk Rk ke ok o ook ook ok ok ok ok ook K ok K o o
>k

* <PUBLIC> FUNCTION: void
ffiDefaultMainController_c::KuiActionNotConfirmed()

sk sk o ok ool s ok ok o ok e ok ok otk ok ok ok ok ok ok sk s ok Sl o o o o ol o ok o o o o ok o ok ok o ok ok o oK ok o ok ok o o ko ok ok e ok o ok o o oK ok o ok o
* %
*

* Shuts the application down
*

ok ok ok ok ok ook ok ok sk sk ok ok ok ok ok ok ok ok o ok sk ok o ok ok ok ok o o o o ok o o R ol o o ok o K o o o ok oK o ook o ok o o ok
*%/

void fftDefaultMainController_c::KuiActionNotConfirmed()

f
t

}

// does't need any actions

Template for header file of skeleton main controller class.

[/ o ok ook o ok ok ok ok ok oKk o kR KRk R ok sk ok ok ok ok ok ok ok ok ok ok ok kb ok o oK
* %k

* %

** $RCSfile$

* *

*e

o ot o ook o ook e s o R o ok ok ok o o ok o o ko ok ok ok ok ok ok o ok ok ok ok ok o oK o R R o o o e ok ok
* *

** $Author$

* k

* * Copyright (c) Nokia Telecommunications 1991 - 1995

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

35

40

45

50

*

L T Y T T e LT Ty
* *
** Template file for Application Framework generated class

* *

*

s ok o o s o e o ok o ok o o o ok 3k ok e o e ol o ok o o o ok ok oK ok o o ok o o ke ok e o o o ok ok ok ok o ok ok ook o o ok o ok ok ok
* %

** Log

*

R e e L Y

BODY_START

#ifndef ABCMAINCONTROLLER_H
#define ABCMAINCONTROLLER_H

/* MODULE IDENTIFICATION

Aok ok ko k ok Rk kR kR Rk kR k Rk k ok ok ko kok bRk

static char abccontmainmx_rcsid{] = "Id" ;

#include "abccontmadfmx.h”

class abcMainController_c -
: public abcDefaultMainController_c
f

L
public:

abcMainController _c(abcDefaultProgram_c *abcPrg);
~abcMainController_c();

virtual errAtom_c *MVCCreate();

// AF_TOKEN_START#public_methods#

/f AFTool generated abstract partner methods.

/f Don’t add your own code between AF_ TOKENS
/1 AF_TOKEN_END#public_methods#

// AF_TOKEN_START#abs_partner_methods#

// AFTool generated abstract partner methods.

// Don’t add your own code between AF_ TOKENS
// AF_TOKEN_END#abs_partner_methods#

protected:

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

35

40

45

51

private:

abcMainController_c(const abcMainController ¢ &);
abcMainController_c operator=(const abcMainController ¢ &) const;

3

#endif
/* ABCMAINCONTROLLER _H */

Template for implementation file of skeleton main controller class.

RALE Rl e L T I I T TIhmTTTTT™™
* %

* &

** $RCSfile$

* *

*

ok ok sk ok ok o ok ko ok ok ok ok ok o ok ok e ook ok ok ok ok ok ok ok ok ok ok oK ok o ok o o oK o o o ok o K oK R o o o o o o o o o o ok

* *

** SAuthor$

* %k

* * Copyright (c) Nokia Telecommunications 1991 - 1995

*k

3¢ 3k 3 ok ok ko ok sk e ok ok sk ok ok ok sk ok ol ok ok ok ok sk ok ok ok ok ok ok ok ok ke sk sk ke sk ok ok ook ok o sk sk o ok ok sk e ol o o ol ok ok o ok 3k ok ok K ok ok ok K Ak 3k ok ok
* %

* * Template file for Application Framework generated class

* ok

*

o ok b e sk ok ok ke ok ok ok o o ok 3 e ok ok ok ok ok ok ok ok ok ok 3 ke ok sk ok kol ok ok ke ok ok ok o ok ok sk o ok ok ok oK ok ok oK ok ok o o ok ok ok ok ok 3k A K K
* *

** Log

*
*********#**#**#****/

BODY_START

// MODULE IDENTIFICATION

e ok ok ko ok ok ok ok ak sk 3k o ok ok sk sk ok ok b ook dk ok ook sk ok ko ok ok K ok ok kK kR Rk kK

static char rcsid[] = "$1d$" ;
TRACE_DECLARATION

#include "fficontmainmx.h" // Header of this main controller
#include "fftmainprdfmx.h" // Header of the program module

40

WO 97/14097 PCT/FI96/00530

52

e L T e T T L L e T T T
** .

5 | * <PUBLIC> FUNCTION: fftiMainController_c::fftMainController c()

ok o e ok ok o A o ok o ok e ok ok e ok sk ol ol ok o ok ok ok ok ke ok ok ok o ok ok ok o ok of ke ok ok b ak ok ok ok ok ok ko k3 3 ok ok 3k K K oKk o ok ok 3K ok ok ok ok ok ok ok
*%
*

10 | * Constructor.

*

0o e o A 5 0 o o ok 3k ok o o e oK o oK ok ok ok i oK ok o o o o o oo o o ok R o oK o o o e o o o o ok o o o ok o o ok o o ok ok ok ok ok ok
%/

15 |fftMainController_c::fftMainController ¢

(

fftDefaultProgram_c *fftPrg

)

- |: fitDefaultMainController_c(fftPrg)

20 |{

LA L e L e L e e P P

* %

* <PUBLIC> FUNCTION: fftMainController_c::~fftMainController c()

3 2k o o o ok 3 3 oK Ak ko ok 3k ok ok ok 3k ok ok ok 3k ok ok ok ok ak 3k ik ak ok 3 2k 3 3K 3k 3k 3k ok 3k o 3 ok ok ok ok ol A 3k ok 3 sk ake ko ak sk ak ok ok sk ok ok ok ok ok 2k ok ok %k

30 * *

*

* Destructor
*

35 e 2k o o ofe ok o o o ok ok e e e o e 3 o ok o 3k o o e ok ok ok oK ok ok ok ok ok 3k ok 3 B e ok ok o ok 3k ok ok ok ok sk ke ok ok ok ol sk ok ok o ook ok ok sk koK R ok

%/
fftMainController_c::~fftMainController_¢()
{

/**t**********t*#*t#t**‘#t#**tt*************t*****#t**t*#*******#**#*#*
* %k

45 | * <PUBLIC> FUNCTION: ffiMainController_c::MVCCreate()

WO 97/14097 PCT/F196/00530

10

15

20

53

WA oK o ok o o o ok ok ok ok ok oKk ok o o o 0 o ok ok o oK o ok ok oo ok ok e o o o e ok ok oK o ok ok e o oo o o ok ok ok ok ok ok ok o ok ok

* %
*

* Controller creation
%k

#*#*******t**********#************#***********#*******************
**/
errAtom_c *fftMainController_c::MVCCreate()

errAtom_c *err = ffiDefaultMainController_c::MVCCreate();

// add actions needed in conroller construction here

return err.

ABS_STUBS

WO 97/14097 PCT/FI96/00530

5

10

15

54
Appendix 2 - The syntax of the description file of the code generator

The following table shows the syntax of the description file of the code
generator. The symbols printed in italics are metasymbols. The metasymbols
are not shown as such in the description file, but their purpose is only to show
the syntax in a more easily readable form. The terminal symbols are shown in
quotation marks. The terminal symbols are shown in the description file in the
same form as in the table below. Symbols that are shown in brackets "[","]" are
optional. Symbols shown in braces "{","}" may be repeated a zero or more
times. The comment lines begin with the sign #.

The design of the structure of the description file was restricted by the
general structure of the configuration files that is of the form:

ConfFile ::="("item ")"
token value {"("item™)"}

item
wherein token is any character string containing alphanumeric

characters and value is any character string in quotation marks.

ConfFile ::= "("
"application" value
PrefixDeclaration
FamilyldDeclaration
TypeDeclaration
[SkelTestDeclaration)
{ServDeclaration}
MainContDeclaration
. "y
PrefixDeclaration .= "(" "program_block_prefix value)"
FamilyldDeclaration ::= "(" "family_id" value ")"
SkelTestDeclaration ::= “(" "skeleton_test" value ")"
ServDeclaration = "(" service value ")"

WO 97/14097 PCT/F196/00530

55

MainContDeclaration .= "
"main_controller” value
{PublicMethodDeclaration}
[ViewDeclaration]
{ServDeclaration}
{SubContDeclaration}
my
ViewDeclaration ::= ("
"view" value
{PublicMethodDeclaration}
[FileDeclaration]
TypeDeclaration
{AbsPartnerDeclaration)}
e
SubContDeclaration ::= ("
"sub_controller" value
{InstanceDeclaration}
. {PublicMethodDeclaration}
[FileDeclaration)
{ViewDeclaration]
[AbsPartnerDeclaration)
{ServDeclaration}
{SubContDeclaration}
myo
"
"abs_partner" value
{AbsMethodDeclaration}
e
AbsMethodDeclaration :: "(" "abs_partner_method" value ")"
PublicMethodDeclaration "(" "public_method" value ")"

{]

AbsPartnerDeclaration ::

InstanceDeclaration ::= "(" "instance" value “)"

FileDeclaration = "(" "file" value ")"
Typedeciaration ::= "(" "type" value ")"
value ::= “"{any character expect ""'}""

The following example clarifies the semantics of the configuration file.

WO 97/14097 PCT/F196/00530

10

15

20

25

30

35

40

45

56

Application name, must comply with the form rule.
(application "fooprgmx"

Prefix for application classes and file names.
(program_block_prefix "foo")

Application identifier. Used as an identifier with which the signaliing service
identifies the process
(family_id "FOOPRG")

Application type. "UI" for user interface, applications,
"BG" for background applications

(type "UI")

Indicates that the method frames generated by the application are
10 be provided with the program AF_TRACE service that prints on
the terminal information about implementing the method

(skeleton_test "yes")

List of services employed by the application.
(service "wne_manager")
(service "process_control")

Main controller definition. The name of the main controller class
is generated automatically to correspond to the form rule
(main_controller "" :

Main controller definition. The name of the main view class

is generated automatically to correspond to the form rule.

{ view ""
Main view type. Determines the GUI component from
which the main view visual # class is inherited.
(type "basic_application_base")

public interface definition
(public_method "void ShowThisFM(char *txt)")
(public_method "void ShowThatFM(int valur)")

Main view abstract partner definition. The name of the
abstract partner class is generated automatically

to correspond to the form rule.

(abs_partner ""

Declaration of abstract partner methods. Methods inherited
from the # GUI component do not have to be # declared.

WO 97/14097 | PCT/F196/00530

57

(abs_partner_method "void ::FoolsDone()")
(abs_partner_method "void ::FooSomethingWanted()")

)

list of services to be used in the main controller
(service "working dialog")

Subcontroller definition. The subcontroller name is generated from the
10 # given character string to correspond to the form rule. E.g. Subl =>

fooSubl Controller ¢

(sub_controller "sub1"

If there are several instances of the subcontroller, they must be

15 # separated from one another with different instance names. If there
is only one instance, it can be left without definition, and the
character string given in the subcontroller definition is used as the
instance name
(instance "donald")

20 (instance "mickey")

Character string used for generating the subcontroller file names
can be left out, in which case the character string given in the

subcontroller definition is used.

25 (file "subcon")

public interface definition
(public_method "void Action()")
(public_method "int OtherAction()")

30
Subview definition. If no subview name is given the controller
name is used for generating the class name.
(view "subl"

35 # Subview type. Defines the components from which the

subview visual class is inherited.
(type "basic_ves_no_help_dialog"

Subview abstract partner class definition
40 (abs_partner ""
(abs_partner_method "
void::FooSubViewTellsSomething()"

)
45)

Subcontroller abstract partner class definition.

WO 97/14097 PCT/F196/00530

58

(abs_partner
(abs_partner_method "void ::FooSubContWantsThis()")
(abs_partner_method "void ::FooSubContWantsThat()")

)
5 (sub_controller "sub2"
(view ""
(type "bui_ok_help_dialog")
)
)

10)

(sub_controller "sub3"
(v'lew L]
(type "bui_ok_cancel_help_dialog™)
15)

WO 97/14097 PCT/FI96/00530

10

15.

20

25

30

59

Claims:

1. A method for producing application-specific computer-controlled
services for a user, the method comprising

- forming a description file wherein the application for which the
service is intended is described with the terms of the application architecture
used,

- generating automatically an application-specific program code from
which the application-specific computer program is formed by using software
generating means (11) and by following the rules of the application architecture
used, and

- running said computer program in order to provide the user with said
service,

characterized in that the computer program is divided into
different groups in such a way that

- the first group (A) is formed only of such a program code that
remains the same regardless of the application,

- the second and the third group are provided with a program code
produced by means of said generation in such a way that (a) the second group
(B) only includes a program code produced by means of said generation and
(b) the third group (C) contains such a code produced with said generating that
the designer is intended to change after the generation, and

- the generating means (11) are informed of whether the code to be
generated is produced for the second or for the third group.

2. A method according to claim 1, characterized in that the
application is object-based and that the properties of the first group are
inherited to the second group and the properties of the second group to the
third group.

3. A method according to claim 1, characterized in that inside
the third group the part to be modified by the designer is separated from the
rest of the group with character strings reserved for this purpose.

4. A method according to claim 1, characterized in that in the

description an individual identifier is given to the information that is

WO 97/14097 PCT/FI96/00530

10

15

20

25

30

60

supplemented by means of said generation with a code to which changes made
by the designer are to be added.

5. A method according to claim 2, characterized in that the input
data provided to the generating means is divided into two parts in such a way
that one corresponds to said second group and the other one corresponds to
said third group.

6. A method according to claim 5, characterized in that said
parts consist of template files, and that the generation is performed by
supplementing the template files on the basis of the application description.

7. A method according to claim 1, characterized in that the
method produces network management services with which the user of the
network management system controls the telecommunication network.

8. A system for producing application-spéciﬁc computer-controlled
services, the system comprising

- a description stored in a memory about the application for which the
service is intended, the description being made with the terms of the application
architecture used,

- software generating means (11) for generating an application-
specific program code according to the rules of the application architecture
used, characterized in that said generating means are operationally
coupled to separation means (12, 13) for separating the generated code into
two different groups in such a way that one group (B) only contains a program
code produced by means of said generation and the other group (C) contains
such a code produced by said generation that is to be changed by the designer
after the generation.

9. A system according to clam 8, characterized in that the
separation means comprise said description and separate template files (13a,
13b) for each group.

10. A system according to claim 8, characterized in thatitis a
part of a network management system where the system is used to produce

network management services by means of which the user of the network
management system controls the telecommunication network.

PCT/FI96/00530

WO 97/14097

1/8

HAd —HAad

w4

HAs —{Has Has

74

S A

L Ol

N — ‘ 4d “ =
3009 Pt =2
sassvanves | NALLMMATIVONYIY | | >m%
o] F000@MENED e
5 ,
(5358Y10 S3JUM/SPEa)
1nV430 '3 ALYN HOLVHINID | NOILYOITddY
-OILONN4 11Nv430 \\\\@ﬂ\\ speas | 40NOILdINOS3Q
 0id103dsNoILYD | 3000 d3LvHaNaD . s | .
-ddv Hum sassvo L i z1
g AN speas Speas
e N
S3SSV10 ISV +OMN 3000 A4vVYEN _ |
o | ST 24V 1dWAL S3114 31V 1dWaL |
v _ SSY10 Iy SSY10 11V430
g | \ <
"
ol ! %L syuavianal eF
||||||||||||||| R
. €l

PCT/F196/00530

WO 97/14097

|
_
S3ISSYIOMINSD | !
YITIONLNOD +40 t_/
_ HOLYHYINIO

|
|)
$3SSY1D M3IA \.\ LY

TWNSIA

IONIWWYHOOYd

ONDINIT 8
NOILVIIdWOD

1001 AV1dSIQ

‘ o] NOILYDIddV

. o 40 NOILI¥0S30
G
% . :
i
N%

2/8

zy

WYY¥90ud
NOISY3IANOD 43INOIS3A
-—_— ,/f.lllt\\\ . L
d13H SONILLAS | 3714
=1 NOILVOINddY Q3HSINI4 |= Ll
\\\\\ 30IA3Q-3SVD
N _ ~—

SM - -

¢ Old

WO 97/14097 PCT/FI196/00530

3/8
= Base station radio network parameters AlVY FIG. 3a
File | Seftings | | Help
Identifier]
Name —
Max. transmit power | | [Select base station...]
Min. transmit power |:]

Selection of base station FIG. 3b
4
. ¥
= Base station radio network parameters AV FIG.7
Fie | Settings | [Hel

Identifier

Name —
Max. transmit power | | (Select base station..)

Min. transmitpower []

Priority mode Yes [J] No[]

Updating parameters FIG. 9 |

Updating radio network parameters,
please wait...

(ok J (Cancel)

PCT/FI196/00530

WO 97/14097

(Jsuoyesasegiajugy

salyjuap!

sassaoold

()parosjagiuause)3oqy
(Juoneysaseguajug

07 J9)|0U0DUOI08[R5Iqe

sweu

9~ dnosBuonejsaseg

{oexsqe} (pajosiasiaionuonogy

Q
<

9 dDsqy.a|I0Nuo)U0I33Sqe

S|01jU0d

oemmssm%gﬁ
()sisjowesedies

1aMOguI
T
saynuapl
aweu

3 uonejsaseq

(pajosysiajionue)Iqy
(Jpaieaoyuonngloa|agoqy
(Jpsieanoyuonngaiepdnoqy

{loexisqe)()pajosjasiuawalgoqy

3" dASQYMaIAUOYIR[aSIGE

{1exsqe} (pajenjoyuonngiosiasoqy
{ioensqe} ()pajeanoyuonngajepdnogy

(ndsiuswarzies

9" dASQYMAIAUBIE

0 MBIAUOID3)3S0qe

Boeip~djay~asop aiseq = adk}
7
v 'Old v

97 Igjjojuo)uiepoge

(JW4s1ajauwrIR gMOYS

9 MBIAUIBOqR

X aseq uojeaydde oiseq = sdAj

9" weiboigoge

XWwisAoipesoqe = uoljedydde
aqe = xya1d™yo0)q” weiboud
Qvyoay = pAjwe

IN = 8dA)

5ok = 158)"U0}3|9Xs

—
%4

WO 97/14097

PCT/FI196/00530

5/8 FIG. 5

D

(application "abcradionetmx" # application name

application specific declaration
(program_block_prefix "abc") # from varki
(famly_id "ABCRAD") # from wmslibmx.h

(type

"m") #

(skeleton_test"yes")

(main_controller

(view

)

main view

(type "basic_application_base")

(public_method "#abc1# void ShowParametersFM(name_t nimi,
int[D_t tunnus, float maxPower, float minPower)"

)

(abs_partner ""

(abs_partner_method
"#abc2# void:: AbcUpdateButtonActivated(name_t name,
intID _t identifier,float maxPower, float minPower)"

)

(abs_partner_method
"#abc3# void ::AbcSelectButtonActivated()”

)
)

(sub_controller "selection"

(public_method "#abc4# void EnterBasestation()")
(view ""
(type "basic_close_help_dialog")
(public_method
"#abc5# void SetElementsfm(ElementList_t elements)”

)
(abs_partner ""

(abs_partner_method

"#abc6# void ::AbcAlkioSelected(int alkio)"
)

)

(abs_partner
(abs_partner_method
"#abc7# void ::AbcOhjainSelected(intID_t tunnus)"

)

PCT/FI96/00530

WO 97/14097

6/8

O

®

!

@, ®

g9 woi4

®

® 0
;

v v v
(Jwwpaiuomdniagiung {ponsqo} (Jpajunpdniaiuging
(Jwwpassaiguoungdiay {ponsqo} ()(passalguonngasopying ()Wwpaiuopiuig { poijsqo } (Jpaunpiuirging
(Jwwpassaiguosngaso|) {pousqo} (Jpassaiguonngdjeying WwpaluopiIxg {possqo }()paruopixaing
) ymaipfiojoigdjayasopinp Y dnsqymaiojoiqdiapasopinp Y Jmatpasnguanoddying) dASqymaiAasoguonox|ddying

sjuauodwod adepajul J3s

(w4moySHaw
{poipgo}H{)ainamaw

) BS0gMIAQNSIAW

v

{nousqo}(Jaigarpw
(JaronnyAw

v v
(wiuoiniaiuuois
(JwajshgBumopuimazorup) A (JuowoaiuiuoiSHAN
(IW1moySIAW (Juowysau oIS AW {poisqo} (Jdnuois)Aw
{poipgo} (Jaioan)aw {poupqo} (Jooaryypy | | (uonoxddyaziomuppw

) 30GIAOIUO)INGIAW

Y BSDGMIALIDWIAL

) 3SDgIa}0NUTIUOWIAL

) asogunsboiaw

Sasse|d aseq ++IAN

V9 'Old

g9 'Old

V9 °9Old
9Ol

PCT/F196/00530

WO 97/14097

{ousqo}(papapasiuawaqy

Y JASQYMAIAUOIDB|aSIqD

(Jpassaiquopngdiaying
(passanguayingasoping

(panajagiuauaipqy
(Juonoisasogsiuy

(Jai0aAw

(paopdniagiunging
(Jpaiopuuging
(pawopxing
(Jpanajasuayjonuoyqy
(paiompywoungnapsiqy
()paronipyuoungaiopd gy
(Joioaaw

(JumopinyS)Aw
) woiborgqo

)" 19|[04u0JU0IPARSIG

Y J3[j04u0)uIDYPGD

L

4

QUEITEIRIE
(YWisivawayyias {pousqo} ()panajasialjouuoyay (Jpawmnjuojionuotpyiny
(Jaw0aaw =
= @) d)sqyisyonuoju0fesIqe [{)pawnuoyuorpyny (Janpois)Aw
) M3IAUOISSIQO (Jpamomasopwmray =
(}paluopasopwmIay A_w (oo | wnifoiginojagaqe
(Jaioaryp = O
) 18]{0U0)UOIDIRGHNDIAEID [I ISTyIa|jOUO)UOE|aS|N0jR]IG0 e a__s__aM_ il alisk
@ v
~ {\W{s1a18wningmoys ()parompyuoungejasIqy
*meg: pasop ey (aroaniaw (}pejoniyuoingaiopdpgy
) _dISQYRINLOBESIDLA0G0 Y MOy Y NSqyaADYG0
v v y
(javoan)Aw (javoam)w | - {ousqo}{)poivomasopimaay
) MIAUOIA[ASID}3EIq0) MOAUDWHADIDAD] 3 JASYMAIALIOWIND}AGIGD
N B e Y
I ajpan | I : I
I Lo
|) [ONSIAMIIAUDINRESIGD | I) onsIAMaIALIONIO | mv_ou pajelauag
ket ittt it Skt
v v v v v v v
g9 914 ® ®: ® ® @ @ wou

WO 97/14097

controls

8/8

PCT/FI96/00530

FIG. 8

abcMainController_¢

BasestationController_c

PriorityMode()

controls

AbcUpdateButtonActivated() {concrete}
AbcSelectButtonActivated() {concrete}
AbcControllerSelected() {concrete}

Basestation_c

name

SetPriarityMode()

identifier
q maxPower
minPower

SetParameters()
EnterParameters()
EnterBasestationController()

1
INTERNATIONAL SEARCH REPORT

International application No.
PCT/FI 96/00530

A. CLASSIFICATION OF SUBJECT MATTER

IPC6: GO6F 9/45

According to International Patent Classification (IPC) or to both nati

onal classification and IPC

B. FIELDS SEARCHED

IPC6: GO6F

Minimum documentation searched (classification system followed by classification symbols)

SE,DK,FI,NO classes as abave

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Blectronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

(13.03.96), abstract

Category*| Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A WO 9004227 Al (EXPRESSWAY, INC.), 19 April 1990 1-10
(19.04.90), page 3, line 30 - page 5, line 11;
page 6, line 3 - page 7, line 20, figure 1

P,A 7 US 5535329 A (HASTINGS), 9 July 1996 (09.07.96), 1-10
abstract

P,A EP 0701203 A1 (NEC CORPORATION), 13 March 1996 1-10

Further documents are listed in the continuation of Box

[]

C. m See patent family annex.

A"

Special categories of cited documents:

document defining the general state of the art which is not cansidered
to be of particular reievance

erlier document but published on or after the intemational filing date
document which may throw doubts on priacrity claim(s) or which is
cited to establish the publication date of ancther citation or other
special reascn (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later than
the priority date claimed

g

oL

o
pe

“T" tater document published after the international filing date or priority
date and oot in conflict with the application but cited to understand
the principle or theory underlying the invention

“X* document of particular relevance: the claimed inveation canaot be
considered novel or cannot be considered to involve an inventive

step when the document is taken alone

document of particular relevance: the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

oy

&

Date of the actual completion of the international scarch

26 March 1997

Date of mailing of the international search report

27 -03- 197

Name and mailing address of the ISA/
Swedish Patent Office

Box 5055, S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer

Anders Strobeck
Telephone No. _+46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

04/03/97 | PCT/FI 96/00530
Patent document Publication Patent family Publication

cited in search report date member(s) date
wo 9004227 Al 19/04/90 AU 4504689 A 01/05/90
CA 2000447 A 12/04/90

US 5535329 A 09/07/96 US 5335344 A 02/08/94
AU 2188792 A 25/01/93

CA 2111958 A 07/01/93

EP 0591360 A 13/04/94

US 5193180 A 09/03/93

WO 9300633 A 07/01/93

EP 0701203 Al 13/03/96 JP 8069381 A 12/03/96

Form PCﬁlSAnlo (patent family annex) (July 1992)

This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original
documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

U BLACK BORDERS

0 IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

D@ED TEXT OR DRAWING

%LURRED OR ILLEGIBLE TEXT OR DRAWING

L SKEWED/SLANTED IMAGES

U COLOR OR BLACK AND WHITE PHOTOGRAPHS

J GRAY SCALE DOCUMENTS

[LINES OR MARKS ON ORIGINAL DOCIﬁVIENT

0 REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

(] OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning these documents will not correct the image

problems checked, please do not report these problems to
the IFW Image Problem Mailbox.

	2004-07-12 Foreign Reference

